Introduction to C Programming

Problem Solving Through 'C'

Learning 'C' Programming

- Syntax set of rules that defines the grammar of the programming language. (Checking symbolic representation).
 - A x B (language L1: multiplication) [Error in L2]
 - A * B (language L2 : multiplication) [Error in L1]
- Semantics set of rules used to derive the meaning of the statements.
 - In language L3
 - A **x** B (multiplication)
 - A * B (power)

• Solving

Given to find multiplication of two numbers. If you write **A*B** then semantics is not correct.

Block Diagram of a Computer

Types of Real World Problems

- In real world applications we come across day to day problems
 - Going to market for shoping
 - Solving quadratic equations
 - Matrix Operation: Add, Multiply...
 - ATM
 - Grade calculation
 - Railway/Flight Reservation
 - Library Automation
 - Many More.....

Approach to Problem Solving

- Define and Identify the Problem
- Analyze the Problem
- Identifying Possible Solutions
- Selecting the Best Solutions
- I/O Specifications
- Algorithm
- Coding
- Testing
- Maintenance

An Example- Quadratic Equation

• Problem Definition: A quadratic equation of the form

$$ax^2 + bx + c = 0$$

- Analysis: The equations helps to find
 - Two values x₁ and x₂
 - Given constants a, b, c
 - Value of $a \neq 0$

• Solutions:

- Factorization
- Quadratic Formula

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a},$$

- Best Solution
 - Choose a best possible solution

• I/O:

- Input: a, b, c
- Output: x₁ and x₂

• Algorithm/Flowchart:

- An algorithm is a sequence of well defined steps often used for solving problem
- A flowchart is a schematic representation of an algorithm

Coding

• Set of instructions for solving a problem

Testing

• Finding the errors in the code for possible values

Maintenance

- Modification due to requirements change
- Scalability

Introduction to Algorithms

- Step by step method to solve a problem
- Must include ALL required information

Flowcharts

- Graphical Representation of problems
- Symbols

More About High Level Languages

- The languages are designed keeping in mind features of portability
- The languages are machine independent
- Easy to write and understand
- The programmer pays whole attention logic of the program

Translators

- For translating high level and Assembly Language to machine language
 - Assembler: Assembly Level —— Machine Level
 - Interpreter
 - High Level → Machine Level
 - Interpreter searches the error statement by statement
 - Compiler
 - High Level —> Machine Level
 - Compiler searches all errors in the code and lists them

Some High Level Languages

- BASIC
- FORTRAN
- PASCAL
- COBOL
- C
- C++
- Java

С

- Developed at AT&T Laboratory of USA
- Year: 1970
- Created By: Dennis Ritchie

BCPL ^{(Base}) B U C

(Basic Combined Programming Language)

Why C?

- A basic foundation for learning programming language elements
- Major parts of popular OS like windows, Linux, Unix are written in C
- Embedded System Programs are written in C
 - Microwave Oven
 - Washing machines
 - Digital Cameras

- C provides several language elements that makes interaction with hardware
- Several Gaming programs are also developed in C

Getting Started A, B, C.....Z a, b....z 0,1,2.....9 Character Set @,*,&..... Constants Definition Variables Keywords Instructions Syntax #include<stdio.h> main() Program { printf("Hello World") }


```
First C Program
// single line comment
/* multiple line
  comments within code*/
                                       To include
                                       information about
#include<stdio.h>-
                                       standard
                                       input/output
main()
        -----> Function main
printf("Hello World\n");
                                      → Body of Function
```